Laboratory for Experimental Nuclear Physics
Home E-Mail
National Research Nuclear University, "MEPhI"
Laboratory for Experimental Nuclear Physics

2024

  1. Akimov D. Yu. et al., First constraints on the coherent elastic scattering of reactor antineutrinos off xenon nuclei,arXiv:2411.18641;
  2. A.I. Bolozdynya et al., Upgrading the Cryogenic System of the RED-100 Emission Detector for Operation with Liquid Argon ,Instrum Exp Tech 67, 700–703 (2024) ;
  3. COHERENT collaboration, Accessing new physics with an undoped, cryogenic CsI CEvNS detector for COHERENT at the SNS, Phys. Rev. D 109, 092005;
  4. COHERENT collaboration, Measurement of Electron-Neutrino Charged-Current Cross Sections on 127I with the COHERENT NaI⁢𝜈⁢E Detector, Phys. Rev. Lett. 131, 221801;

2023

  1. RED-100 collaboration, Characterization of the ambient background in the RED-100 experiment location at Kalinin Nuclear Power Plant, JINST 18 (2023) P12002;
  2. COHERENT collaboration, COHERENT Collaboration data release from the measurements of CsI[Na] response to nuclear recoils arXiv.2307.10208;
  3. COHERENT collaboration, Accessing new physics with an undoped, cryogenic CsI CEvNS detector for COHERENT at the SNS arXiv:2311.13032v1;
  4. GERDA collaboration, Search for tri-nucleon decays of 76Ge in GERDA, Eur. Phys. J. C 83 (2023) 778;
  5. GERDA collaboration, Final Results of GERDA on the Two-Neutrino Double-β Decay Half-Life of 76Ge, Phys. Rev. Lett. 131 (2023) 142501;
  6. COHERENT collaboration, Measurement of natPb (νe,Xn) production with a stopped-pion neutrino source, Phys. Rev. D 108 (2023) 072001;
  7. BM@N collaboration, Production of π+ and K+ mesons in argon-nucleus interactions at 3.2 AGeV, J. High Energ. Phys. 07 (2023) 174;
  8. COHERENT collaboration, Measurement of Electron-Neutrino Charged-Current Cross Sections on 127I with the COHERENT NaIνE Detector, Physical Review Letters 131, 221801 (2023);
  9. Акимов Д.Ю. и др., Электронный шум, генерируемый космическими мюонами в двухфазном эмиссионном детекторе РЭД-100, ПТЭ, 2023, №2;
  10. RED-100 collaboration, Using the Two-Phase Emission Detector RED-100 at NPP to Study Coherent Elastic Neutrinos Scattering off Nuclei, Physics 2023, 5, 492-498;
  11. Aalbers J. et al., A next-generation liquid xenon observatory for dark matter and neutrino physics, J. Phys. G: Nucl. Part. Phys. 50 (2023) 50 013001;

2022

  1. V. Alenkov, H. W. Bae, J. Beyer, V. Kornoukhov et al., Alpha backgrounds in the AMoRE-Pilot experiment, Eur. Phys. J. C (2022) 82:1140.;
  2. Szydagis M. et al., A Review of NEST Models, and Their Application to Improvement of Particle Identification in Liquid Xenon Experiments,arXiv:2211.10726;
  3. Akimov D. et al., The RED-100 experiment,JINST 17 (2022) T11011;
  4. D.Yu. Akimov, A.I. Bolozdynya, D.M. Arkhangelsky, A.V. Pinchuk, A Setup for Studying Electroluminescence in Gaseous Xenon,Instrum.Exp.Tech. 65 (2022), 849–857 ;
  5. Akimov D. et al. (COHERENT Collaboration), COHERENT constraint on leptophobic dark matter using CsI data,Phys.Rev.D 106 (2022) 052004;
  6. Akimov D. et al. (COHERENT Collaboration), The COHERENT Experimental Program,arXiv:2204.04575;
  7. Abdullah M. et al., Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications,arXiv:2203.07361;
  8. Akimov D., Bolozdynya A., Development of Two-Phase Emission Detectors in Russia,Universe 2022, 8(3), 139;
  9. Akimov D. et al. (COHERENT Collaboration), Monitoring the SNS basement neutron background with the MARS detector,JINST 17 (2022) P03021;
  10. Akimov D. et al. (COHERENT Collaboration), Measurement of scintillation response of CsI [Na] to low-energy nuclear recoils by COHERENT,JINST 17 (2022) P10034;

2021

  1. M. Agostini, G. Araujo, A. M. Bakalyarov, V.N. Kornoukhov et al. Characterization of inverted coaxial 76Ge detectors in GERDA for future double- β decay experiments, European Physical Journal C, 2021 Vol. 81, No. 6.;
  2. V.N. Kornoukhov et al., The status and perspectives of the AMoRE experiment, Particle Physics at the Year of 150th Anniversary of the Mendeleev's Periodic Table of Chemical Elements, pp. 384-387 (2021);
  3. Szydagis M. et al., A Review of Basic Energy Reconstruction Techniques in Liquid Xenon and Argon Detectors for Dark Matter and Neutrino Physics Using NEST,Instruments 2021, 5(1), 13;
  4. Akimov D. et al. (COHERENT Collaboration), First Detection of Coherent Elastic Neutrino-Nucleus Scattering on Argon,Phys.Rev.Lett. 126, 012002;
  5. Akimov D. et al.(COHERENT Collaboration), First Probe of Sub-GeV Dark Matter Beyond the Cosmological Expectation with the COHERENT CsI Detector at the SNS, arXiv:2110.11453
  6. Akimov D. et al. (COHERENT Collaboration), Simulating the neutrino flux from the Spallation Neutron Source for the COHERENT experiment,Phys. Rev. D 106, 032003;
  7. Akimov D. et al. (COHERENT Collaboration), A D2O detector for flux normalization of a pion decay-at-rest neutrino source,JINST 16 (2021);
  8. Akimov D. et al., A Passive Shield for the RED-100 Neutrino Detector,Instruments and Experimental Techniques (2021) arXiv:2010.11258;
  9. Akimov D. et al. (COHERENT Collaboration), Development of a 83mKr source for the calibration of the CENNS-10 Liquid Argon Detector,JINST 16 (2021), arXiv:2010.11258;

2020

  1. M. Agostini, G. Araujo, A. M. Bakalyarov, V.N. Kornoukhov et al. Final Results of GERDA on the Search for Neutrinoless Double-β Decay, Phys.Rev.Lett. 125 (2020) 25, 252502;
  2. Akimov D. et al.(COHERENT Collaboration), COHERENT Collaboration data release from the first detection of coherent elastic neutrino-nucleus scattering on argon, arXiv:2006.12659;
  3. D.S. Akerib et.al. The LUX-ZEPLIN (LZ) Experiment, Eur.Phys.J.C 80 (2020) 11, 1044 arXiv:2006.02506;
  4. Akimov D. et al. (COHERENT Collaboration), Sensitivity of the COHERENT Experiment to Accelerator-Produced Dark Matter,Phys.Rev.D 102 (2020) 5, 052007, arXiv:1911.06422;
  5. D.S. Akerib et.al. The LUX-ZEPLIN (LZ) Experiment, Nucl. Instrum. Meth. A 953(2020)163047 arXiv:1910.09124;
  6. D. Akimov et al.(COHERENT Collaboration), First ground-level laboratory test of the two-phase xenon emission detector RED-100, Journal of Instrumentation 15(2020)P02020, arXiv:1910.06190
  7. Akimov D. et al. (COHERENT Collaboration), First Detection of Coherent Elastic Neutrino-Nucleus Scattering on Argon,Phys.Rev.Lett. 126, 012002;

2019

  1. V.N. Kornoukhov et al., First results from the AMoRE-Pilot neutrinoless double beta decay experiment, European Physical Journal C, 2019 Vol. 79, No. 9;
  2. V.N. Kornoukhov et al., Enriched 40Ca100MoO4 Single Crystalline Material for Search of Neutrinoless Double Beta Decay, Springer Proceedings in Physics, 2019 Vol. 227 pp. 113-124;
  3. Akimov D. et al. Fast component re-emission in Xe-doped liquid argon Journal of Instrumentation. – 2019. – Т. 14. – №. 09. – С. P09022., arXiv:1906.00836;
  4. Акимов Д Ю, Белов В А, Болоздыня А И, Ефременко Ю В, Коновалов А М, Кумпан А В, Рудик Д Г, Сосновцев В В, Хромов А В, Шакиров А В. Упругое когерентное рассеяние нейтрино на атомном ядре — недавно обнаруженный тип взаимодействия нейтрино низких энергий Успехи Физических Наук 189(2019)173–186; Phys. Usp. 62(2019)166–178. doi;
  5. D. Akimov et al. (COHERENT Collaboration) First Constraint on Coherent Elastic Neutrino-Nucleus Scattering in Argon, Phys. Rev. D 100(2019)115020, arXiv:1909.05913;
  6. D. Akimov et al. An integral method for processing xenon used as a working medium in the RED-100 two-phase emission detector Instruments and Experimental Techniques 62(2019)457–463;

2018

  1. D. Akimov et al. Synthesis of Titanium Nanoparticles in Liquid Xenon by a High-Voltage Discharge Technical Physics Letters 44 (2018) 637–639;
  2. H.S. Jo et al.. Status of the AMoRE Experiment Searching for Neutrinoless Double Beta Decay Using Low-Temperature Detectors J.Low.Temp.Phys. 193 (2018)1182-1189;
  3. M. Agostini et al. New Data Release of GERDA Phase II: Search for 0νββ decay of 76Ge KnE Energ.Phys. 3 (2018) 202-209;
  4. M. Agostini et al (GERDA Collaboration). GERDA results and the future perspectives for the neutrinoless double beta decay search using 76Ge Int.J.Mod.Phys.A 33(2018)1843004;
  5. M. Agostini et al (GERDA Collaboration). Improved Limit on Neutrinoless Double-β Decay of 76Ge from GERDA Phase II Phys.Rev.Lett. 120 (2018)132503, arXiv:1803.11100;
  6. M. Agostini et al. Upgrade for Phase II of the Gerda experiment Eur.Phys.J. C78 (2018)388, arXiv:1711.01452;

2017

  1. Akimov, D.Yu. et al. Observation of coherent elastic neutrino-nucleus scattering Science 357(2017)1123-1126, 2017, arXiv:1708.01294;
  2. Akerib, D.S. et al. Identification of radiopure titanium for the LZ dark matter experiment and future rare event searches Astroparticle Physics 96 (2017)1-10, arXiv:1702.02646;
  3. Akimov, D.Yu. et al. Status of the RED-100 experiment Journal of Instrumentation 12 (2017) C06018;
  4. Bolozdynya, A.I. Two-phase emission detectors in search for rare events with low energy depositions Journal of Physics: Conference Series 798(2017)012208;
  5. Akimov, D.Yu. et al. COHERENT Experiment: Current status Journal of Physics: Conference Series 798(2017)012213;
  6. Akimov, D.Yu. et al. New method of Kr-85 reduction in a noble gas based low-background detector Journal of Instrumentation 12(2017)P04002;
  7. M. Agostini et al. The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay LEGEND AIP Conf.Proc. 1894 (2017) no.1, 020027;
  8. M. Agostini et al. Search for Neutrinoless Double Beta Decay with GERDA Phase II AIP Conf.Proc. 1894(2017)020012;
  9. M. Agostini et al. Active background suppression with the liquid argon scintillation veto of GERDA Phase II J.Phys.Conf.Ser. 888(2017)012238;
  10. M. Agostini et al. First results from GERDA Phase II J.Phys.Conf.Ser. 888(2017)012030;
  11. M. Agostini et al. Study of the GERDA Phase II background spectrum J.Phys.Conf.Ser. 888(2017)012106;
  12. D.Yu. Akimov et al. The RED-100 two-phase emission detector Instruments and Experimental Techniques 60(2017)175-181, arXiv:1910.06190;
  13. D.Yu. Akimov et al. Purification of liquid xenon with the spark discharge technique for use in two-phase emission detectors Instruments and Experimental Techniques 60(2017)782-788;

2016

  1. Akimov, D.Yu. et al. Observation of delayed electron emission in a two-phase liquid xenon detector Journal of Instrumentation 11(2016)C03007;
  2. Akimov, D.Yu. et al. RED-100 detector for the first observation of the elastic coherent neutrino scattering off xenon nuclei Journal of Physics: Conference Series 675(2016)012016;
  3. J.Y. Lee et al. A Study of Radioactive Contamination of 40Ca100MoO4 Crystals for the AMoRE Experiment IEEE Trans.Nucl.Sci. 63(2016)543-547;
  4. G.B. Kim et al. A CaMoO4 Crystal Low Temperature Detector for the AMoRE Neutrinoless Double Beta Decay Search Adv.High Energy Phys. 2015(2015)817530, arXiv:1602.07401;

2015

  1. Akimov D.Yu. et al. Observation of light emission from Hamamatsu R11410-20 photomultiplier tubes Nuclear Instruments & Methods A 794 (2015) 1-2, arXiv:1504.07651;
  2. Akimov D.Yu. et al. A two-phase emission liquid Xe detector for study of low-ionization events at the research reactor IRT MEPhI IEEE Transactions on Nuclear Science 62(2015)257-263;
  3. Bolozdynya A.I. et al. The two-phase closed tubular cryogenic thermosyphone International Journal of Heat and Mass Transfer 80 (2015) 159-162;
  4. Bolozdynya A.I. et al. Thermostabilization System Based on Two-phase Closed Cryogenic Thermosyphon for RED100 Detector Physics Procedia 74(2015)431-434;
  5. Akimov D.Yu. et al. Investigation of Coherent Neutrino Scattering at the Spallation Neutron Source Physics Procedia 74 (2015) 411-415;
  6. Akimov D.Yu. et al. Search for Elastic Coherent Neutrino Scattering off Atomic Nuclei at the Kalinin Nuclear Power Plant Physics Procedia 74 (2015) 423-430;
  7. V. Alenkov et al. (AMoRE Collaboration). Technical Design Report for the AMoRE 0νββ Decay Search Experiment, arXiv:1512.05957, Dec 18, 2015. 93 pp.;

2014

  1. Akimov D.Yu. et al. Experimental study of ionization yield of liquid xenon for electron recoils in the energy range 2.8-80 keV Journal of Instrumentation 9 (2014) P11014, arXiv:1408.1823;
  2. Akerib D.S. et al. (LUX Collaboration). First results from the LUX dark matter experiment at the Sanford Underground Research Facility Phys. Rev. Lett. 112 (2014) 091303, arXiv:1310.8214;

2013

  1. D.S. Akerib et al. First results from the LUX dark matter experiment at the Sanford Underground Research Facility Phys. Rev. Lett. 112, 091303 (2014), arXiv:1310.8214;
  2. D. Akimov et al. Coherent Scattering Investigations at the Spallation Neutron Source: a Snowmass White Paper, arXiv:1310.0125v1

2012

  1. D. Yu. Akimov et al. Measurement of single-electron noise in a liquid-xenon emission detector Prib.Tekh.Eksp. 2012 (2012) 4, 6-13, doi:10.1134/S002044121204001X;
  2. S.V. Ivakhin et al. Modeling of Filters for Formation of Mono-Energetic Neutron Beams in the Research Reactor IRT MEPhI Proceedings of GLOBAL 2011, Makuhari, Japan, Dec. 11-16, 2011, Paper No. 392341;
  3. A. Bolozdynya et al. Opportunities for Neutrino Physics at the Spallation Neutron Source: A White Paper;
  4. D. Yu. Akimov et al. Perspectives to measure neutrino-nuclear neutral current coherent scattering with two-phase emission detector